INTRODUCTION TO NEUTRON SCATTERING

Boualem Hammouda

National Institute of Standards and Technology Center for Neutron Research

- -- Why Use Neutrons?
- -- Neutron Sources
- -- Continuous vs Time-of-Flight
- -- Neutron Sources in the US
- -- The NIST Neutron Scattering Facilities
- -- Neutron interactions
- -- Elastic vs Inelastic Scattering
- -- Coherent and Incoherent Scattering
- -- Neutron Scattering Lengths and Contrast Factors
- -- Introduction to SANS

WHY USE NEUTRONS?

- Neutrons interact through short-range nuclear interactions. They have no charge and are very penetrating and do not destroy samples.
- -- Neutron wavelengths are comparable to atomic sizes and interdistance spacings.
- Neutrons interactions with hydrogen and deuterium are widely different making the deuterium labeling method an advantage.

NEUTRON SOURCES

CONTINUOUS VS TIME-OF-FLIGHT

Continuous Reactors

Measure some of the neutrons all of the time

Pulsed Sources

Measure all of the neutrons some of the time

NEUTRON SOURCES IN THE US

Continuous Sources:

- -- HFIR-Oak Ridge National Laboratory. http://neutrons.ornl.gov.
- -- NIST-National Institute of Standards and Technology. http://www.ncnr.nist.gov.

Pulsed Sources:

- -- WNR/PSR LANSCE (Los Alamos). http://lansce.lanl.gov
- -- SNS (Oak Ridge National Lab). http://www.sns.gov.

NIST Thermal Instruments

THE NIST NEUTRON SOURCE

The NIST Guide Hall

The NIST New Guide Hall

NEUTRON INTERACTIONS

ELASTIC VS INELASTIC NEUTRON SCATTERING

NEUTRON SCATTERING TECHNIQUES

SCATTERING LENGTH DENSITY CALCULATOR

Web address: http://www.ncnr.nist.gov/resources/sldcalc.html

Input: Compound: D_2O

Density: 1.11 g/ml

Output: Neutron Scattering Length Density: 6.39*10-6 Å-2

Scattering length density: $\rho_A = \frac{b_A}{v_A} = \frac{scattering \ length}{volume}$

The Contrast Match Method

SANS GEOMETRY

$$\theta_{\text{min}} = (R_1 + R_2)/L_1 + R_2/L_2 + R_3/L_2 \sim 3.7*10^{-3} \text{ Rad} \sim 0.2^{\circ}$$

REFLECTOMETRY GEOMETRY

$$\theta_{\text{min}} = (R_1 + R_2)/L_1 + R_2/L_2 + R_3/L_2 \sim 3.7*10^{-3} \text{ Rad} \sim 0.2^{\circ}$$